
Artificial intelligence (AI) and machine learning are being rapidly adopted for a range of applications in the financial services industry. As such, it is important to begin considering the financial stability implications of such uses. Because uses of this technology in finance are in a nascent and rapidly evolving phase, and data on usage are largely unavailable, any analysis must be necessarily preliminary, and developments in this area should be monitored closely.
Many applications, or “use cases”, of AI and machine learning already exist. The adoption of these use cases has been driven by both supply factors, such as technological advances and the availability of financial sector data and infrastructure, and by demand factors, such as profitability needs, competition with other firms, and the demands of financial regulation. Some of the current and potential use cases of AI and machine learning include:
Financial institutions and vendors are using AI and machine learning methods to assess credit quality, to price and market insurance contracts, and to automate client interaction.